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AlJstract-We first restate fonnulas for stresses and stress couples of a theory of isotropic moderately
thick plates in the classical texIs of Love and of Timoshenko in simplified form. We then use recent
results for a two-dimensional twelfth-order plate theory, to derive a generalization of the classical
fonnulas such that the results for the isotropic case appear as special cases of the corresponding
results for transversely isotropic plates. In addition we transfonn the general equations of our two­
dimensional twelfth-order theory so as to be left with one fourth-order equation for an interior
solution contribution, and one fourth-order equation for transverse normal stress edge zone effects,
in addition to the previously known two simultaneous second-order equations for transverse shear
stress edge zone effects.

l. INTRODUCTION

Given the existence of a classical system of exact fonnulas for stress couples and the
associated stress components, for edge loaded "moderately thick" isotropic plates[l, 2], we
are here concerned with related matters, as follows.

(1) We show that it is possible to write the classical fonnulas in a simpler, more
symmetrical fonn.

(2) We show that the consequences of a recently derived twelfth-order two-dimensional
theory of transversely isotropic plates[4] are consistent with the classical exact results in
such a way that the classical results for isotropic plates become special cases of results for
the case of transverse isotropy.

(3) We show that our generalization of the classical results for moderately thick plates
is associated with the interior solution portion of the twelfth-order system of two­
dimensional differential equations in Ref. [4].

(4) We complement our earlier result of a system of two simultaneous second-order
differential equations for the part of the edge zone solution contribution which accounts
for the effect of transverse shearing strain by the derivation of a new fourth-order equation
for the part of the edge zone solution contribution which accounts for the effect of transverse
normal strain.

2 EXPRESSIONS FOR STRESS COUPLES AND STRESS COMPONENTS FOR

MODERATELY THICK ISOTROPIC PLATES

With x, y as coordinates in the mid-plane of a plate of thickness 2c, and with w.. (x, y)
as the deflection function for this midplane, the classical fonnulas for the stress couples in
an isotropic plate are, with some slight change of notation, as follows[l, p.473; 2, pp.98­
104]

[
8 + V 2V2 ]M" = -DM Wm,,,,, + VWIII," - -WC Will,,,

t Dedicated to my friend Nicholas Hoff, on the occasion of his eightieth anniversary.
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The corresponding formulas for stresses are

_ - Ez [ ( 2 - Y Z2) 2 2 ]
(j: - 1 _ y 2 Wm..... + YWm•yy - 1 - -6- c2 C V wm.)'Y

- Ez [ ( 2 - Y Z2) 2 2 ]
(jy = 1 _ y2 Wm•,y + YWm.%% - 1 - -6-c2 C V Wm.%%

- Ez [ (2- Y Z2) 2 2 ]
t = 1- y 2 (1- Y)Wm.%y + 1--6- c2 C V Wm."" •

(1 b)

(Ie)

(2a)

(2b)

(2c)

In this E and yare Young's modulus and Poisson's ratio, and DM =2Ec3/3(1 - y2
).

Equations (1) and (2) are exact consequences of the equations of three-dimensional
elasticity, subject to a stipulation of absent tractions over the two face planes z = ±c, with
the deflection function Wm having to satisfy the differential equation V2V2wm =O.t

It has previously been indicated in Ref. [3] that upon making use of the form of the
differential equation for Wm, and upon introducing a function

* 8 + Y c
2

V2
Wm = Wm + """10 1 _ Y Wm

it is possible to write eqns (la)-(lc) in the simpler symmetrical form

(3)

(4)

and we now note that it is correspondingly possible to write eqns (2a)-(2c) in the simpler
form

(5)

where

(6)

t We may note that in the context of contemporary asymptotic considerations of interior and edge zone
portions of the solution of the three-dimensional problcm, as first colllidcred by Friedrichs and Ooldcnweisc:r
and most recently by Gregory and Wan[S]. these classical exact solutions, which are a.saociated with the names
of Maurice Levy. Saint Vcnant and J. H. Michell. are in fact the interior solution portions for the problem of
the three-dimensionally isotropic plate acted upon by edge loads only.
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3. STRESS COUPLES AND DIFFERENTIAL EQUATIONS OF THE TWELFTH-ORDER

TWO-DIMENSIONAL THEORY

The relevant equations obtained in Ref. [4] are as followst

713

M, = -DM[W~, + vw~" + (1 + V)BMTT] (7b)

M", = -(1 - V)DMW~, (7c)

W· = W + BQDM{V 2W+ [(1 + V)BMT - BQs]T}

+ BasDp{V 2v + [(1 + v)Bn - Bs]T} (8)

[CT - (1 + v)DMBM~2BMT - Bas) - (1 + v)DpBp~2Bn - Bs)]T

=v + (1 + v)DMBMTV2W+ (1 + v)DpBpTV2
V (9)

DMV2{V2W+ [(1 + V)BMT - Bas]T} = 0 (10)

DpV2{V2
V + [(1 + v)Bn - Bs]T} = - T. (11)

In this wand v are weighted averages of the three-dimensional transverse displacement
component u%, of the form

W = 1{ (1 _ Z2)U dz
4 2 % ,

C -t C

1 { ( Z2 Z4)V=- 1-6-+ 5- u dz
8c c2 c4 z

-t

(12)

and the coefficients D, Band C are given in terms of elastic moduli E, E.. v, Vz and G, in
the form

3
Ba = 5Gc'

7Ec3

Dp ----=­
- 2(1 - v2)'

1
Bas = 35Gc'

4c
CT = 3465E

%

4
Bs = 315Gc

(l3a)

(13b)

(13c)

with v%/.J(EE%) taking the place of a coefficient vJE% and with the factor 3465 in eqns (13a)
replacing a factor 1155 in the corresponding expression in Ref. [4].

In extension of what has been done in Ref. [4] we now observe that eqn (9) may be
transformed into an equation for T only, by taking the Bi-Laplacian of eqn (9), and upon
then using eqns (10) and (11) in order to eliminate wand v. The resulting equation for T
is

t Upon omitting terms involving the surface load intensity q(x,y~ as weD as tbe edge zone solution
contribution functions F and K. We note tbat the fonnulas in Ref. [4] sbould be corrected by changing B"T.
Bn • B"t' B~ into -B"T' -BrT, -B"t' -Brt• with this aJrccting cqns (7)-(11~ and that cqn (9) has factors
(l + v)D" and (1 + v)Dr • which correct factors D" and Dr in the corresponding fonnula in Ref. [4).
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With the defining relations in eqns (13a)-(13c) this equation can be rewritten as

2C41-121V;/126~V4T_4C2_1_[ E -vJ(~)JV2T+T=O. (14b)
495 1 - v2 E: 45 1 - v 2( 1+ v)G : E:

With T determined from eqn (14a) we then have W from eqn (10).
With eqns (14a) and (10) being two sequential fourth-order equations, and with eqns

(9)-(11) being altogether an eighth-order system we do not now determine v from the
remaining eqn (11). Instead we observe, on the basis of the form of eqns (9), (10) and (14a),
that v will come out to be of the form

(15)

In this the coefficients Ao and Al follow, in terms of the coefficients in eqns (9Hl1), upon
substituting eqn (15) in eqn (9) and upon observing eqns (10) and (14a), from the solution
of two simultaneous linear algebraic equations. We do not here carry out this determination
of Ao and A I' for the following reason. It is evident from eqn (14b) that the function T
represents an edge zone solution contribution, which will accordingly not be used within
the present context. A similar consideration holds for the determination of w.

4. INTERIOR SOLUTION PORTIONS FOR THE TWELFTH·ORDER

TWO·DIMENSIONAL PROBLEM

Given eqns (10), (14a), and (15) for the determination of T, wand v, the interior
solution portion of this system comes out to be of the remarkably simple form

7; = 0, (16)

With eqns (16) it follows then from eqn (8) that

and from eqns (7a)-(7c) that

(17)

(18)

For a comparison with solution (4) of the theory of "moderately thick" plates we
observe that we have, on the basis of eqns (12a) and (12b)

(19)

and, when E = 2(1 + v)G

(20)

Remarkably, the factor "4" in this corresponds to a factor "4 + v12" in eqn (3). We now
show that this discrepancy is apparent rather than real. and caused by the distinction
between Wm in eqn (3) and WI in eqn (17). For a verification of this fact we make use of the
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defining relations (I2) for wand v, in conjunction with the stipulation that Uz in eqn (20)
is appropriately approximated by an expression of the form

With this we have from (12)

(21)

4
v = -105vm (22)

and therewith an expression for Wm in terms of wand v

and for Wi in terms of Wim, on the basis of (I6)

Since V2V2Wi == 0 we further have

and therewith

The introduction of eqn (26) into eqn (17) gives

1[4E J(E)J c
2

2== Wim + 10 (1 + V}G + Va E
z

1 _ VV Wim'

(23)

(24)

(25)

(26)

(27)

A comparison of this expression for wr in conjunction with eqn (18), with the
expression for w: in eqns (3) and (4) indicates the following. Equations (18) and (27)
represent a generalization of the results in eqns (3) and (4). The two sets of results coincide
with each other upon specializing eqn (27) by setting \I. - \I, E. - E and E =2(1 + \I)G. In
addition to the fact that eqn (27) is a generalization of eqn (3), this equation also provides
information on the nature ofthe two terms in the classical factor 8 + \I in eqn (3). Evidently,
the first term represents the effect of transverse shearing strain, while the second much
smaller term represents the effect of transverse normal strain.
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S. EXPRESSIONS FOR STRESS IN ACCORDANCE WITH THE TWELFTH-ORDER

TWO·DIMENSIONAL THEORY

The expression for the bending stress (I" in Ref. [4] can be written in the form

3 [ ( 5Z
2

) JZ(I =- M + 1 - -- P -
" 2c2

" 3c2
" C

(28)

and corresponding expressions hold for (ly and T,y , In this M, is given by eqn (7a) and the
corresponding expression for P", in Ref, [4] is

where

P" = -D,.[v~", + Vv~y + (1 + v)BnTJ

v* = v + BsDp {V2v - (Bs - (1 + v)BPT]T}

+ B(lsDM {V2w - [B(ls - (1 + V)BMT]T},

(29)

(30)

Inasmuch as we are limiting attention to interior solution contributions we deduce from
this and from eqn (16)

(31)

The introduction of p,,/ from eqns (29) and (31) and of M"j from eqns (18) and (27)
then gives

(32)

With the defining relations in eqns (12a)-(12c) we obtain from this, after some rearrange­
ments and cancellations

1( £ J(£))Z2J c
2 2 }- 6 (l + v)G - v, £, c2 1_ v V w/m (33)

with corresponding expressions for (I, and 'C,y'

The content of eqn (33) is consistent with the contents of eqns (5) and (6), inasmuch
as we obtain the first relation in eqns (5) and (6) from eqn (33) upon identifying Wlm with
the quantity Wm in eqn (6) and upon introducing the assumption of isotropy by setting
E == 2(1 + v)G, v, == v and £ = £,. In addition, we now recognize the way in which the
terms with V2wm in eqn (6) depend in part on the effect of the transverse shearing strains
arid in part on the effect of the transverse normal strain.
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